# Microsoft Agent Framework al detalle
> [!info] Resumen de los principales conceptos
> ### Fundamentos del Microsoft Agent Framework
>
> - **Lanzamiento**: Disponible desde el 2 de octubre de 2025 como SDK y runtime open-source.
> - **Objetivo**: Infraestructura para sistemas de IA multiagente en producción.
> - **Inspiración**: Combina Semantic Kernel (conectividad y telemetría) con AutoGen (orquestación avanzada).
>
> ---
>
> ### Cuatro pilares del framework
>
> 1. **Estándares abiertos e interoperabilidad**
>
> - Protocolos: MCP (descubrimiento de herramientas), A2A (comunicación entre agentes), OpenAPI.
> - Soporte multi-nube y portabilidad (Azure, OpenAI, on-premises).
> 2. **Pipeline de investigación a producción**
>
> - Patrones de orquestación heredados de AutoGen: secuencial, concurrente, chat grupal, handoff, magnético.
> - Durabilidad para tareas de larga duración y entorno seguro para pruebas experimentales.
> 3. **Extensibilidad y comunidad**
>
> - Memoria pluggable (Redis, Pinecone, Azure AI Search).
> - Definiciones en YAML/JSON y conectores nativos (Microsoft Graph, Fabric).
> - Proyecto open-source con participación activa en GitHub.
> 4. **Preparación para producción**
>
> - Observabilidad (OpenTelemetry), seguridad (Microsoft Entra ID, Content Safety), CI/CD, y aprobación humana.
>
> ---
>
> ### Comparativa con otras soluciones
>
>
>
> |Framework|Enfoque principal|Fortalezas clave|
> |---|---|---|
> |LangChain / LangGraph|Modularidad y RAG|Generalista, menos centrado en cumplimiento empresarial|
> |CrewAI|Prototipado rápido con agentes por rol|Menor soporte para estándares y observabilidad|
> |AutoGen|Orquestación innovadora|Microsoft Agent Framework lo extiende con durabilidad y flujos tipados|
> |AWS Bedrock Agents|Infraestructura gestionada|Lock-in con AWS; menos personalizable|
> |n8n|Plataforma visual low-code|Ideal para prototipos rápidos; se puede integrar con Microsoft Agent Framework|
>
> ---
>
> ### Integraciones destacadas
>
> - **n8n**: Automatización híbrida con flujos visuales y agentes pro-code.
> - **Magentic-UI**: Interfaz web centrada en el humano para planificación colaborativa y aprobación de acciones.
>
> ---
>
> ### Casos de uso y despliegue
>
> - **Aplicaciones empresariales**: Soporte al cliente (Commerzbank), flujos humano-IA (Fujitsu), análisis de datos (BMW).
> - **Entornos regulados**: Auditoría, salud, finanzas.
> - **Despliegue**: Azure Container Apps, Kubernetes, integración con CI/CD.
>
> ---
>
> ### Costes y rendimiento
>
> - **Licencia**: Gratuita (MIT).
> - **Infraestructura**: Pago por uso en Azure (contenedores, Foundry, almacenamiento).
> - **LLMs**: Compatible con Azure OpenAI, OpenAI y otros proveedores.
>
> ---
>
> ### Limitaciones actuales
>
> - Integración más profunda con el ecosistema Microsoft.
> - Herramientas .NET aún en desarrollo frente a Python.
> - Curva de aprendizaje para patrones avanzados (e.g., magnético).
> - Validación en producción aún en fase temprana.
---
# Contenido original: Microsoft Agent Framework A Comprehensive First Look
Fuente: https://medium.com/@info_90506/microsoft-agent-framework-a-comprehensive-first-look-d1319c0d72fd
Microsoft’s [Agent Framework](https://learn.microsoft.com/en-us/agent-framework/), which reached general availability on October 2, 2025 \[1,2\], **provides production-ready infrastructure for multi-agent AI systems**. This open-source SDK and runtime bridges experimental multi-agent AI with enterprise-grade systems, combining [Semantic Kernel’s](https://learn.microsoft.com/en-us/semantic-kernel/overview/) stability with [AutoGen’s](https://microsoft.github.io/autogen/stable//index.html) innovative orchestration into a unified toolkit.
This article examines the framework’s features, enterprise advantages, practical applications, and how it compares to alternatives like LangChain, CrewAI, and n8n. For developers building agentic AI systems that reason, collaborate, and adapt, Microsoft Agent Framework delivers significant capabilities for production deployment.
## Why Agentic AI Needs a Solid Foundation
AI agents go beyond basic chatbots. They handle complex goals by reasoning, invoking tools and APIs, coordinating with other agents, and incorporating human oversight. Enterprises apply them in areas like audit automation at KPMG and real-time vehicle data analysis at BMW \[2\].
Prototypes often struggle in production due to fragmented APIs, weak cloud support, and gaps in observability or compliance \[2\]. Semantic Kernel provided connectors and telemetry but lacked multi-agent flexibility, while AutoGen excelled in orchestration patterns but missed enterprise features. Microsoft Agent Framework addresses these limitations by unifying both approaches, supporting Python and.NET with a seamless path from local development to Azure deployment \[1,2\].
## The Core Pillars: What Makes Microsoft Agent Framework Stand Out
Microsoft Agent Framework builds on four key pillars for versatility across development stages \[2\].
### 1\. Open Standards and Interoperability
The framework incorporates Model Context Protocol (MCP) for tool discovery, Agent-to-Agent (A2A) for communication, and OpenAPI for rapid API integration \[2\]. Agents remain portable across Azure, other clouds, or on-premises environments. The cloud-agnostic runtime supports various providers including Azure OpenAI, OpenAI, and other compatible services \[1,2\].
### 2\. Research-to-Production Pipeline
Microsoft Agent Framework adopts AutoGen’s proven orchestration patterns: sequential, concurrent, group chat, handoff, and magnetic \[2\]. It adds durability for long-running tasks, with experimental features isolated in a dedicated package for safe testing before production deployment \[2\].
### 3\. Extensible and Community-Driven
Features include pluggable memory options (Redis, Pinecone, Azure AI Search), declarative YAML/JSON for agent definitions, and native connectors to Microsoft Graph, Fabric, and external services \[2\]. As a fully open-source project on GitHub, community engagement has been strong since launch \[2\].
### 4\. Production Readiness
Built-in capabilities include observability via OpenTelemetry, security with Microsoft Entra ID and Azure AI Content Safety, human-in-the-loop approvals, and CI/CD integration \[2\]. Early production adopters include Commerzbank for customer support automation and Fujitsu for human-AI workflow integration \[2\].
## Understanding Frameworks vs. Workflow Systems
Before comparing specific solutions, it’s important to distinguish between two fundamentally different approaches to building AI agents:
**AI Agent Frameworks** are pro-code development libraries and SDKs. Developers write Python, JavaScript, or.NET code to define agents, orchestration logic, and integrations. Examples include Microsoft Agent Framework, LangChain, LangGraph, AutoGen, and CrewAI. These frameworks provide maximum flexibility and control but require programming expertise. They’re ideal for complex, custom agent systems where developers need fine-grained control over behavior, can version control their logic, and integrate deeply with existing codebases.
**Workflow Systems** are visual, low-code platforms with drag-and-drop interfaces for building agent workflows. Examples include n8n, Flowise, and Botpress. These systems represent agents and logic as visual nodes and connections, making them accessible to non-developers or teams wanting rapid prototyping. They excel at connecting pre-built components and services quickly, though they may offer less flexibility for highly custom logic compared to pro-code frameworks.
**Hybrid approaches** exist: some workflow systems like n8n allow embedding custom code when needed, while some frameworks offer visual tooling (like [AutoGen Studio](https://microsoft.github.io/autogen/dev//user-guide/autogenstudio-user-guide/index.html)) for prototyping before moving to production code.
Microsoft Agent Framework positions itself firmly as a **pro-code framework** with enterprise-grade features, though it integrates with visual tools like the [VS Code AI Toolkit](https://marketplace.visualstudio.com/items?itemName=ms-windows-ai-studio.windows-ai-studio) for development workflows and can be wrapped by workflow systems like n8n for broader orchestration.
## Framework Comparison: Understanding the Landscape
The multi-agent ecosystem offers several options. Here’s how Microsoft Agent Framework compares based on architecture, features, and production readiness.

Framework Comparison: Understanding the Landscape
## Detailed Comparisons
**vs. LangChain/LangGraph**: LangChain offers modularity for chains and RAG but takes a more general-purpose approach \[3,16,21\]. Microsoft Agent Framework excels in enterprise tooling with built-in compliance, Azure integration, and standardized protocols. LangGraph’s graph orchestration provides flexibility, but Microsoft Agent Framework’s deterministic and dynamic workflow modes deliver comparable functionality with reduced configuration requirements \[2\].
**vs. CrewAI**: CrewAI focuses on role-based agents and task delegation for rapid prototyping \[19,20,26\]. However, it lacks depth in observability, security features, and support for standards like MCP/A2A. CrewAI suits small projects, while Microsoft Agent Framework scales efficiently for enterprise deployments with complex orchestration requirements \[26\].
**vs. AutoGen**: As AutoGen’s evolution, Microsoft Agent Framework refines event-driven models into typed workflows with checkpointing and durability \[2\]. Migration is straightforward, primarily involving mapping `AssistantAgent` to `ChatAgent` and updating message types to unified `ChatMessage` \[2\].
**vs. AWS Bedrock Agents**: Bedrock provides managed infrastructure with straightforward setup but enforces AWS lock-in. Microsoft Agent Framework’s open, customizable architecture enables multi-cloud deployment while offering comparable managed services through Azure AI Foundry when desired \[2\].
**vs. n8n**: n8n excels as a low-code workflow automation platform with visual drag-and-drop building and 400+ service integrations \[26\]. It provides rapid prototyping for hybrid workflows combining deterministic automation with AI agent nodes. However, n8n focuses more on orchestration than advanced multi-agent reasoning patterns like group chat or magnetic coordination.
Microsoft Agent Framework delivers **a pro-code approach with deeper support for complex multi-agent scenarios**, enterprise features (built-in observability, compliance, durability), and standardized protocols (MCP, A2A). The two platforms complement each other: n8n can wrap Microsoft Agent Framework components into broader automated pipelines, triggering agents via HTTP endpoints or embedding them as custom tools \[26\].
For organizations already invested in Microsoft services (Azure, Microsoft 365), Microsoft Agent Framework integrates seamlessly, reducing integration complexity \[2\].
## Visualizing the Microsoft Agent Framework Stack
This diagram outlines the integrated architecture of Microsoft Agent Framework, showing its foundations, core pillars, and extensions.

Visualizing the Microsoft Agent Framework Stack
## Positioning Microsoft Agent Framework in the AI Agents Landscape
As of October 2025, the AI agents ecosystem continues rapid evolution. The following table categorizes major frameworks by their primary focus and characteristics:

Positioning Microsoft Agent Framework in the AI Agents Landscape
***Note on landscape evolution***: *This categorization represents the AI agents ecosystem as of October 2025. For a detailed comparison of specific frameworks with focus on human-in-the-loop capabilities, multi-agent orchestration, and safety features, see the earlier analysis:* [*Magentic-UI: An Open-Source Framework for Human-Centered AI Agents*](https://medium.com/@info_90506/magentic-ui-an-open-source-framework-for-human-centered-ai-agents-4e4edbfd6439?sk=d25f2a93ece03567e425140bf6c92b90)*. The rapid pace of development in this space means framework capabilities, positioning, and integrations evolve quickly. Microsoft Agent Framework itself exemplifies this evolution, having reached general availability in October 2025 by unifying previously separate projects (Semantic Kernel and AutoGen) into a single enterprise-ready solution \[1,2\].*
**Key ecosystem capabilities** \[16,17,18,19,20,21,22,23,24\]:
- Agentic RAG for knowledge-intensive tasks
- Voice-enabled agents for conversational interfaces
- Standardized protocols (MCP, A2A) for interoperability
- Deep research agents for comprehensive analysis
- Coding agents for software development assistance
**Microsoft Agent Framework positioning**: Sits firmly in the enterprise-focused category by unifying research innovation (from AutoGen) with production readiness (from Semantic Kernel), supporting hybrid LLM architectures and long-running durability \[2\]. **For regulated environments, it provides human-in-the-loop approvals, OpenTelemetry observability, and content safety features.** While it excels in Microsoft ecosystem integration, its open-source nature and cloud-agnostic runtime enable adoption across diverse technology stacks \[2\].
## Integrating Microsoft Agent Framework with Complementary Tools
### n8n Integration for Hybrid Automation
For enterprises requiring hybrid automation, Microsoft Agent Framework integrates with n8n to combine pro-code agent orchestration with visual workflow pipelines \[26\]. n8n’s AI agent nodes enable embedding Microsoft Agent Framework components as custom tools or sub-workflows, creating seamless data flow between agents and over 400 integrated services (databases, APIs, cloud platforms).
**Implementation approach**: Deploy Microsoft Agent Framework agents on Azure Container Apps or Kubernetes, then trigger them via n8n HTTP request nodes or custom webhook integrations \[26\]. This architecture supports:
- **Event-driven workflows**: n8n monitors triggers (file uploads, database changes, scheduled jobs) and invokes Microsoft Agent Framework agents for complex reasoning tasks
- **Data pipeline integration**: n8n handles ETL operations while Microsoft Agent Framework agents perform analysis, classification, or decision-making
- **Multi-system orchestration**: Combine deterministic n8n workflows with dynamic agent reasoning for regulated sectors like finance or healthcare
The containerized deployment model ensures scalability through horizontal scaling and supports CI/CD pipelines for both workflow definitions and agent logic.
### Magentic-UI for Human-Centered Workflows
Microsoft Agent Framework aligns naturally with Magentic-UI, a human-centered web interface from Microsoft Research built on AutoGen \[11,12\]. Since Microsoft Agent Framework extends AutoGen’s architecture, enterprises can incorporate Magentic-UI’s collaborative features for user-facing deployments.
**Key integration capabilities**:
- **Co-planning interfaces**: Magentic-UI provides web-based planning tools where users collaboratively define agent goals and constraints before execution
- **Action approvals**: Human oversight for sensitive operations, with sandboxed preview environments for reviewing agent actions before commitment
- **MCP compatibility**: Shared protocol support enables seamless tool discovery and execution between Microsoft Agent Framework agents and Magentic-UI interfaces
**Use case example**: In audit or customer support scenarios, Magentic-UI’s web interface wraps Microsoft Agent Framework’s multi-agent orchestration. Human reviewers approve high-stakes decisions (financial transactions, data modifications) while routine tasks execute autonomously \[11,12,15\].
This integration proves valuable for industries like healthcare or finance where human-AI collaboration ensures ethical outcomes and regulatory compliance. The sandboxed security model and explicit approval workflows address trust concerns while maintaining Microsoft Agent Framework’s production-grade reliability.
## Getting Started
Official [tutorials](https://learn.microsoft.com/en-us/agent-framework/tutorials/quick-start?pivots=programming-language-csharp) and [documentation](https://learn.microsoft.com/en-us/agent-framework/) are available on Microsoft Learn \[14\]. The framework supports both Python and.NET development environments.
### Learning Path
1. **Start simple**: Build single-agent RAG applications using built-in memory connectors
2. **Add orchestration**: Implement sequential or concurrent workflows for multi-step tasks
3. **Scale complexity**: Deploy group chat or magnetic patterns for collaborative agent systems
4. **Production deployment**: Add observability, security, and durability features for enterprise use
## Performance and Cost Analysis
Understanding the performance and cost implications helps organizations make informed adoption decisions.
### Performance Characteristics
Based on official documentation and early adopter reports \[2\]:
**Deployment characteristics**:
- **Faster time-to-production**: Built-in enterprise features reduce custom development requirements \[2\]
- **Efficient orchestration**: Deterministic workflow engine with checkpointing and durability for long-running processes \[2\]
- **Scalability**: Azure AI Foundry integration enables horizontal scaling for concurrent agent sessions \[2\]
**Key capabilities**:
- OpenTelemetry integration for comprehensive observability \[2\]
- Human-in-the-loop approval workflows \[2\]
- Support for multiple orchestration patterns (sequential, concurrent, group chat, handoff, magnetic) \[2\]
### Cost Considerations
**SDK and runtime**: Free and open-source under MIT license \[14\]
**Infrastructure costs** (for Azure deployment):
- **Azure Container Apps**: Consumption-based pricing (pay-per-use)
- **Azure AI Foundry Agent Service**: Pay-per-execution model (pricing details available through Azure portal)
- **Storage (for durability)**: Azure Cosmos DB or Redis, varies by data volume
**LLM costs** (variable by provider):
- Azure OpenAI GPT-4: Standard Azure OpenAI pricing applies
- Supports multiple providers including OpenAI, Azure OpenAI, and compatible services \[1,2\]
**Comparison with alternatives**:
- **AWS Bedrock**: Similar consumption pricing but requires AWS ecosystem
- **Self-hosted open-source**: Lower infrastructure costs but higher development/maintenance overhead
- **CrewAI**: Comparable open-source model but fewer enterprise features require custom development
## Advantages, Limitations, and Production Considerations
### Advantages
**Enterprise-ready features**: Built-in observability (OpenTelemetry), security (Entra ID, Content Safety), and compliance features reduce custom development requirements \[2\].
**Seamless Microsoft integration**: Native connectors to Azure, Microsoft 365, Dynamics 365, and Microsoft Graph eliminate integration overhead for Microsoft-centric organizations \[2\].
**Clear research-to-production path**: Experimental features in isolated packages enable safe testing before production promotion, reducing deployment risk \[2\].
**Multi-language support**: First-class Python and.NET support with consistent APIs across both platforms \[1,2\].
**Active community**: Open-source project with active community engagement on GitHub \[14\].
### Limitations and Challenges
**1\. Ecosystem concentration**: While cloud-agnostic in architecture, deepest integration exists within Microsoft ecosystem. Organizations standardized on AWS or Google Cloud may face additional integration considerations \[2\].
**2..NET tooling development**: Python development experience includes Dev UI for agent visualization and debugging, while.NET tooling continues to evolve \[2\].
**3\. Learning curve for advanced patterns**: While basic agent creation is straightforward, complex orchestration patterns (magnetic, group chat with dynamic handoffs) require time investment for developers new to multi-agent systems \[2\].
**4\. Recent general availability**: Reached GA on October 2, 2025, meaning production validation is still building through early adopters. Organizations requiring extensive production references may prefer waiting for broader adoption \[1,2\].
**5\. Memory and state management complexity**: While offering pluggable memory options (Redis, Pinecone, Azure AI Search), configuring optimal persistence strategies for long-running workflows requires careful architecture planning \[2\].
**6\. Connector ecosystem**: While the framework offers native connectors to Microsoft Graph, Fabric, SharePoint, and other services \[2\], organizations requiring extensive third-party integrations should evaluate connector availability for their specific needs.
**7\. Observability configuration**: While OpenTelemetry integration is built-in, achieving comprehensive monitoring requires configuring telemetry collectors, dashboards, and alerting rules \[2\].
### Production Readiness Assessment
**Ready for production**:
- Single-agent applications with well-defined workflows
- Microsoft 365 and Azure-integrated solutions
- Regulated environments requiring compliance features
- Organizations migrating from AutoGen or Semantic Kernel
**Requires careful evaluation**:
- Multi-cloud deployments requiring extensive non-Azure integrations
- .NET-exclusive organizations requiring extensive debugging UI
- Applications with very large numbers of coordinating agents (test scalability thoroughly)
- Budget-constrained projects where managed services cost is prohibitive
**Best suited for**:
- Enterprises with existing Microsoft/Azure investments
- Teams prioritizing enterprise features over ecosystem flexibility
- Organizations requiring human-in-the-loop workflows with compliance tracking
- Development teams comfortable with learning investment for advanced orchestration patterns
## The Road Ahead: Future Developments
Microsoft continues to evolve the Agent Framework with planned enhancements \[2\]:
**Ongoing development**:
- Enhanced Microsoft 365 Copilot integration for seamless agent publishing
- Expanded Azure AI Foundry Agent Service capabilities
- Additional memory connector options
**Community-driven evolution**:
- Open-source contributions from developers worldwide
- New orchestration patterns and connectors
- Improved tooling and debugging capabilities
As agentic AI transitions from experimental to core application logic, Microsoft Agent Framework positions itself as infrastructure for this shift \[2\].
## Conclusion
Microsoft Agent Framework delivers production-ready infrastructure for enterprise multi-agent systems. By unifying AutoGen’s innovative orchestration with Semantic Kernel’s enterprise features, it provides a clear path from research to production deployment.
The framework excels for organizations already invested in Microsoft ecosystems, offering seamless Azure and Microsoft 365 integration with built-in compliance and observability. Since reaching general availability on October 2, 2025, early adopters have demonstrated successful deployments across finance, manufacturing, and customer support use cases \[2\].
For developers building agentic AI applications, Microsoft Agent Framework merits serious evaluation, particularly when enterprise features, security, and Microsoft integration are priorities. The open-source model, active community, and comprehensive documentation lower adoption barriers.
Explore the framework through official resources:
- Documentation: [https://learn.microsoft.com/en-us/agent-framework/](https://learn.microsoft.com/en-us/agent-framework/)
- GitHub: [https://github.com/microsoft/agent-framework](https://github.com/microsoft/agent-framework)
- Tutorials: [https://learn.microsoft.com/en-us/agent-framework/tutorials/quick-start](https://learn.microsoft.com/en-us/agent-framework/tutorials/quick-start?pivots=programming-language-csharp)
*Share your experiences and questions in the comments. Follow for ongoing coverage of AI development tools and frameworks.*
## References
1. Introducing Microsoft Agent Framework (Preview): Making AI Agents Production-Ready — [https://devblogs.microsoft.com/dotnet/introducing-microsoft-agent-framework-preview/](https://devblogs.microsoft.com/dotnet/introducing-microsoft-agent-framework-preview/)
2. The Open-Source Engine for Agentic AI Apps | Azure AI Foundry Blog — [https://devblogs.microsoft.com/foundry/introducing-microsoft-agent-framework-the-open-source-engine-for-agentic-ai-apps/](https://devblogs.microsoft.com/foundry/introducing-microsoft-agent-framework-the-open-source-engine-for-agentic-ai-apps/)
3. Microsoft Agent Framework: Building Production-Ready AI Agents — [https://medium.com/@LakshmiNarayana\_U/microsoft-agent-framework-building-production-ready-ai-agents-bc1c0268e56d](https://medium.com/@LakshmiNarayana_U/microsoft-agent-framework-building-production-ready-ai-agents-bc1c0268e56d)
4. Semantic Kernel + AutoGen = Open-Source ‘Microsoft Agent Framework’ — [https://visualstudiomagazine.com/articles/2025/10/01/semantic-kernel-autogen--open-source-microsoft-agent-framework.aspx](https://visualstudiomagazine.com/articles/2025/10/01/semantic-kernel-autogen--open-source-microsoft-agent-framework.aspx)
5. Microsoft Agent Framework: Evolving AI Agent Development — [https://joshuaberkowitz.us/blog/github-repos-8/microsoft-agent-framework-evolving-ai-agent-development-1339](https://joshuaberkowitz.us/blog/github-repos-8/microsoft-agent-framework-evolving-ai-agent-development-1339)
6. The Microsoft Agent Framework — Enterprise AI Development — Medium — [https://medium.com/@ddmn91/the-microsoft-agent-framework-a-guide-to-building-smarter-ai-systems-3d3f6b1a8f7c](https://medium.com/@ddmn91/the-microsoft-agent-framework-a-guide-to-building-smarter-ai-systems-3d3f6b1a8f7c)
7. Microsoft Announces Open-Source Agent Framework to Simplify AI Development — [https://www.infoq.com/news/2025/10/microsoft-agent-framework/](https://www.infoq.com/news/2025/10/microsoft-agent-framework/)
8. Microsoft unveils framework for building agentic AI apps | InfoWorld — [https://www.infoworld.com/article/4067500/microsoft-unveils-framework-for-building-agentic-ai-apps.html](https://www.infoworld.com/article/4067500/microsoft-unveils-framework-for-building-agentic-ai-apps.html)
9. Open Source SDK and Runtime for Enterprise Agent AI — [https://windowsforum.com/threads/microsoft-agent-framework-open-source-sdk-and-runtime-for-enterprise-agent-ai.383053/?amp=1](https://windowsforum.com/threads/microsoft-agent-framework-open-source-sdk-and-runtime-for-enterprise-agent-ai.383053/?amp=1)
10. Introducing Microsoft Agent Framework | Microsoft Azure Blog — [https://azure.microsoft.com/en-us/blog/introducing-microsoft-agent-framework/](https://azure.microsoft.com/en-us/blog/introducing-microsoft-agent-framework/)
11. Magentic-UI, an experimental human-centered web agent — Microsoft Research — [https://www.microsoft.com/en-us/research/blog/magentic-ui-an-experimental-human-centered-web-agent/](https://www.microsoft.com/en-us/research/blog/magentic-ui-an-experimental-human-centered-web-agent/)
12. microsoft/magentic-ui: A research prototype of a human-centered agentic system — GitHub — [https://github.com/microsoft/magentic-ui](https://github.com/microsoft/magentic-ui)
13. \[PDF\] Magentic-UI: Towards Human-in-the-loop Agentic Systems — Microsoft Research — [https://www.microsoft.com/en-us/research/wp-content/uploads/2025/07/magentic-ui-report.pdf](https://www.microsoft.com/en-us/research/wp-content/uploads/2025/07/magentic-ui-report.pdf)
14. Microsoft Agent Framework Documentation — [https://learn.microsoft.com/en-us/agent-framework/overview/agent-framework-overview](https://learn.microsoft.com/en-us/agent-framework/overview/agent-framework-overview)
15. Microsoft Just Solved AI’s Biggest Problem: Why Magentic-UI Changes Everything — [https://pub.towardsai.net/microsoft-just-solved-ais-biggest-problem-why-magentic-ui-changes-everything-ae09b5d09223](https://pub.towardsai.net/microsoft-just-solved-ais-biggest-problem-why-magentic-ui-changes-everything-ae09b5d09223)
16. The Ultimate Guide to Agentic AI Frameworks in 2025 — [https://pub.towardsai.net/the-ultimate-guide-to-agentic-ai-frameworks-in-2025-which-one-should-you-choose-to-build-the-a1f861f403d8](https://pub.towardsai.net/the-ultimate-guide-to-agentic-ai-frameworks-in-2025-which-one-should-you-choose-to-build-the-a1f861f403d8)
17. AI Agents Landscape & Ecosystem (October 2025) — [https://aiagentsdirectory.com/landscape](https://aiagentsdirectory.com/landscape)
18. The Definitive Guide to AI Agent Frameworks in 2025 — Priyanshi Shah — [https://priyanshis.medium.com/the-definitive-guide-to-ai-agent-frameworks-in-2025-choosing-the-right-tool-for-your-ai-f69e8fa644d5](https://priyanshis.medium.com/the-definitive-guide-to-ai-agent-frameworks-in-2025-choosing-the-right-tool-for-your-ai-f69e8fa644d5)
19. Best AI Agent Frameworks in 2025: A Comprehensive Guide — Reddit — [https://www.reddit.com/r/AI\_Agents/comments/1hq9il6/best\_ai\_agent\_frameworks\_in\_2025\_a\_comprehensive/](https://www.reddit.com/r/AI_Agents/comments/1hq9il6/best_ai_agent_frameworks_in_2025_a_comprehensive/)
20. Top 9 AI Agent Frameworks as of September 2025 — Shakudo — [https://www.shakudo.io/blog/top-9-ai-agent-frameworks](https://www.shakudo.io/blog/top-9-ai-agent-frameworks)
21. A Detailed Comparison of Top 6 AI Agent Frameworks in 2025 — Turing — [https://www.turing.com/resources/ai-agent-frameworks](https://www.turing.com/resources/ai-agent-frameworks)
22. Top 7 AI Agent Frameworks in 2025 — Ultimate Guide — Ampcome — [https://www.ampcome.com/post/top-7-ai-agent-frameworks-in-2025](https://www.ampcome.com/post/top-7-ai-agent-frameworks-in-2025)
23. The AI Agent Tech Stack in 2025: What You Actually Need to Build — [https://www.netguru.com/blog/ai-agent-tech-stack](https://www.netguru.com/blog/ai-agent-tech-stack)
24. Top 10 Open-Source AI Agent Frameworks to Know in 2025 — [https://opendatascience.com/top-10-open-source-ai-agent-frameworks-to-know-in-2025/](https://opendatascience.com/top-10-open-source-ai-agent-frameworks-to-know-in-2025/)
25. Comparing Open-Source AI Agent Frameworks — Langfuse Blog — [https://langfuse.com/blog/2025-03-19-ai-agent-comparison](https://langfuse.com/blog/2025-03-19-ai-agent-comparison)
26. 9 AI Agent Frameworks Battle: Why Developers Prefer n8n — [https://blog.n8n.io/ai-agent-frameworks/](https://blog.n8n.io/ai-agent-frameworks/)
27. Crew.ai vs n8n for AI Agent Development — [https://medium.com/the-agent-protocol/crew-ai-vs-n8n-for-ai-agent-development-which-framework-should-you-choose-2856d4e5c2cf](https://medium.com/the-agent-protocol/crew-ai-vs-n8n-for-ai-agent-development-which-framework-should-you-choose-2856d4e5c2cf)
28. Can anyone explain the benefits and limitations of using agentic frameworks — [https://www.reddit.com/r/AI\_Agents/comments/1hdv7vg/can\_anyone\_explain\_the\_benefits\_and\_limitations/](https://www.reddit.com/r/AI_Agents/comments/1hdv7vg/can_anyone_explain_the_benefits_and_limitations/)
29. CrewAI vs n8n: Key Differences and Which Platform Wins for AI Agents — [https://www.zenml.io/blog/crewai-vs-n8n](https://www.zenml.io/blog/crewai-vs-n8n)